
On Bringing Software Engineering to Computer
Networks with Software Defined Networking

Alexander Shalimov
Applied Research Center for Computer Networks,

Moscow State University
Email: ashalimov@arccn.ru

Ruslan Smeliansky
Applied Research Center for Computer Networks,

Moscow State University
Email: smel@arccn.ru

Abstract—The software defined networking paradigm be-
comes more and more important and frequently used in area
of computer networks. It allows to run software that manages
the whole network. This software becomes more complicated
in order to provide new functionality that was impossible to
imagine before. It requires better performance, better reliability
and security, better resource utilization that will be possible only
by using advanced software engineering techniques (distributed
and high availability systems, synchronization, optimized Linux
kernel, validation techniques, and etc).

I. INTRODUCTION

Software Defined Networking (SDN) is the ”hottest” net-
working technology of recent years [1]. It brings a lot of
new capabilities and allows to solve many hard problems
of legacy networks. The approach proposed by the SDN
paradigm is to move network’s intelligence out from the packet
switching devices and to put it into the logically centralized
controller. The forwarding decisions are done first in the
controller, and then moves down to the overseen switches
which simply execute these decisions. This gives us a lot of
benefits like global controlling and viewing whole network at
a time that helpful for automating network operations, better
server/network utilization, and etc.

A controller (also known as network operating system) is a
dedicated host which runs special control software, framework,
which interacts with switching devices and provides an inter-
face for the user-written management applications to observe
and control the entire network. In other words, the controller
is the heart of SDN networks, and its characteristics determine
the performance of the network itself.

We describe the basic architecture of contemporary
controllers. For each part of a controller we show software
engineering techniques are already used and might be used in
the future in order to improve the performance characteristics.

We show the result of our latest experimental evaluation
of SDN/Openflow controllers. Based on this we explain that
the performance of single controller is not yet enough to
manage data centers and large-scale networks.

Finally, we present the approach of high performance
and reliable next generation distributed controller. We
discuss possible ways to organized it and mention highly
demands software engineering techniques.

II. BACKGROUND

A. History

Since early 2000th many researchers in Stanford University
and Berkeley University have started rethinking the design and
architecture of networking and Internet. The modern Internet
and enterprise networks have a very complex architecture
and are build using an old design paradigm. This paradigm
includes the request for decentralized and autonomous control
mechanisms which means that each network device imple-
ments both the forwarding functionality and the control plane
(routing algorithms, congestion control, etc). Furthermore, any
additional functionality in modern networking (for example,
load balancing, traffic engineering, access control etc) is pro-
vided by the set of complex protocols and special gateway-like
devices.

The enterprise and backbone networks, data center infras-
tructures, networks for educational and research organizations,
home and public networks both wired and wireless are build
upon a variety of proprietary hardware and software which are
cost expensive and difficult to maintain and manage. This leads
to inefficient physical infrastructure utilization, high oncost for
management tasks, security risks and other problems.

Enterprise networks are often large, run a wide variety
of applications and protocols, and typically operate under
strict reliability and security constraints; thus, they represent a
challenging environment for network management. The stakes
are high, as business productivity can be severely hampered
by network misconfigurations or break-ins. Yet the current
solutions are weak, making enterprise network management
both expensive and error-prone. Indeed, most networks today
require substantial manual configuration by trained operators
to achieve even moderate security [1], [3].

The Internet architecture is closed for innovations [4]. The
reduction in real-world impact of any given network innovation
is because the enormous installed base of equipment and
protocols, and the reluctance to experiment with production
traffic, which have created an exceedingly high barrier to
entry for new ideas. Today, there is almost no practical way
to experiment with new network protocols (e.g., new routing
protocols, or alternatives to IP) in sufficiently realistic settings
(e.g., at scale carrying real traffic) to gain the confidence
needed for their widespread deployment. The result is that
most new ideas from the networking research community go
untried and untested.



Modern system design often employs virtualization to de-
couple the system service model from its physical realization.
Two common examples are the virtualization of computing
resources through the use of virtual machines and the virtual-
ization of disks by presenting logical volumes as the storage
interface. The insertion of these abstraction layers allows
operators great flexibility to achieve operational goals divorced
from the underlying physical infrastructure. Today, workloads
can be instantiated dynamically, expanded at runtime, migrated
between physical servers (or geographic locations), and sus-
pended if needed. Both computation and data can be replicated
in real time across multiple physical hosts for purposes of high-
availability within a single site, or disaster recovery across mul-
tiple sites. Unfortunately, while computing and storage have
fruitfully leveraged the virtualization paradigm, networking
remains largely stuck in the physical world [6], [7], [8]. As is
clearly articulated in [5], networking has become a significant
operational bottleneck.

While the basic task of routing can be implemented on
arbitrary topologies, the implementation of almost all other
network services (e.g., policy routes, ACLs, QoS, isolation
domains) relies on topology-dependent configuration state.
Management of this configuration state is cumbersome and
error prone adding or replacing equipment, changing the
topology, moving physical locations, or handling hardware
failures often requires significant manual reconfiguration.

Virtualization is not foreign to networks, as networking
has long supported virtualized primitives such as virtual links
(tunnels) and broadcast domains (VLANs). However, these
primitives have not significantly changed the operational model
of networking, and operators continue to configure multiple
physical devices in order to achieve a limited degree of
automation and virtualization. Thus, while computing and
storage have both been greatly enhanced by the virtualization
paradigm, networking has yet to break free from the physical
infrastructure. Furthermore, the network virtualization func-
tionality implemented via additional protocols under L2-L4
layers increase the complexity and cost of network hardware
and the difficulty of configuring such hardware.

B. SDN

Further, to solve all above mentioned problems with net-
work management and configuration, reduce the complexity
of network hardware and software and make networks more
open to innovations the broad community of academical and
industrial researchers Open Networking Foundation [9] pro-
pose a new paradigm for networking the Software Defined
Networking (SDN).

The approach proposed by the SDN paradigm is to separate
the control plane (i.e. the policy for management network
traffic) from the datapath plane (i.e. the mechanisms for real
packet forwarding) (see Figure 1).

Traditionally, hardware implementations have embodied
the logic required for packet forwarding. That is, the hard-
ware had to capture all the complexity inherent in a packet
forwarding decision. According to new paradigm [1], [2], [4]
all forwarding decisions are done first in software (remote con-
troller), and then the hardware merely mimics these decisions
for subsequent packets to which that decision applies (e.g., all

Fig. 1. Software Defined Network organization.

packets of given network flow). Thus, the hardware does not
need to understand the logic of packet forwarding, it merely
caches the results of previous forwarding decisions (taken by
software) and applies them to packets with the same headers.

The key task is to match incoming packets to previous
decisions. Packet forwarding is treated as a matching process,
with all packets matching a previous decision handled by
the hardware, and all non-matching packets handled by the
software of remote controller. It is important to mention, that
only packet headers are used in matching process.

A network switching hardware now must implement only
a simple set of primitives to manipulate packet headers (match
them against matching rules and modify if needed) and forward
packets [1]. The core feature of such SDN-base switching
software is a flow table which stores the matching rules (in
form of packet header patterns to match against the incoming
packet headers) and set of actions which must be applied to
successfully matched packet.

Switching hardware also must provide common and
vendor-agnostic interface for remote controller. To unify the
interface between the switching hardware and remote con-
troller the special OpenFlow protocol [10] was introduced.
This protocol provides the controller a way to discover the
OpenFlow-compatible switches, define the matching rules for
the switching hardware and collect statistics from switching
devices.

Figure 2 shows an interaction between OpenFlow-based
controller and OpenFlow-based switching hardware, there con-
troller provides the switch with a set of forwarding rules.

The control functionality in SDN paradigm is implemented
by the remote controller a dedicated host which runs special
control software. At the present time there exist a number of
controllers. The most well known are NOX [12], POX [13],
Beacon [14], Floodlight [15], MUL [16], Ryu [19], and Mae-
stro [18]. Again, a controller is a framework which interacts
with OpenFlow-compatible switching devices and provides
an interface for the user-written management applications to
observe and control the entire network. A controller does not



Fig. 2. Software Defined Network paradigm. Remote controller provides the
forwarding hardware with rules describing how to forward packets according
to their headers.

manage the network itself; it merely provides a programmatic
interface. Applications implemented on top of the Network
Operating System perform the actual management tasks.

A controller represents two major conceptual departures
from the status quo. First, the Network Operating System
presents programs with a centralized programming model;
programs are written as if the entire network were present on a
single machine (i.e., routing algorithms would use Dijkstra to
compute shortest paths, not Bellman-Ford). Second, programs
are written in terms of high-level abstractions (e.g., user and
host names), not low-level configuration parameters (e.g., IP
and MAC addresses). This allows management directives to be
enforced independent of the underlying network topology, but
it requires that the Network Operating System carefully main-
tain the bindings (i.e., mappings) between these abstractions
and the low-level configurations.

C. OpenFlow

The OpenFlow protocol is used to manage the switching
devices: adding new flow, deleting the flow, get statistics,
and etc. It supports three message types: controller-to-switch,
asynchronous, and symmetric.

Controller-to-switch messages are initiated by the con-
troller and used to directly manage or inspect the state of the
switch. Asynchronous messages are initiated by the switch and
used to update the controller of network events and changes
to the switch state. Symmetric messages are initiated by either
the switch or the controller and sent without solicitation.

The full set of messages and the detailed specification of
OpenFlow protocol could be found in [11].

III. CONTROLLER

Based on analyzing available materials about almost twenty
four SDN/OpenFlow controllers, we proposed the reference
architecture of SDN/OpenFlow controller shown on Figure 3.

The main components are:

Fig. 3. The basic architecture of an OpenFlow/SDN controller.

1) Network layer is responsible for communication with
switching devices. It is the core layer of every con-
troller that determines its performance. There are two
main tasks here:

• Reading incoming OpenFlow messages from
the channel. Usually this layer relies on the
runtime of chosen programming language. For
faster communication with NIC we can also
use fast packets processing framework like
netmap [20] and Intel DPDK [21].

• Processing incoming OpenFlow messages.
The common approach is to use multi-
threading. One thread listens the socket for
new switch connection requests and dis-
tributes the new connections over other work-
ing threads. A working thread communicates
with the appropriate switches, receives flow
setup requests from them and sends back the
flow setup rule. There are a couple of ad-
vanced techniques. For instance, Maestro dis-
tributes incoming packets using round-robin
algorithm, so this approach is expected to
show better results with unbalanced load.

2) OpenFlow library. The main functionality is parsing
OpenFlow messages, checking the correctness, and
according to a packet type producing new event like
”packetin”, ”portstatus”, and etc. The most interesting
part here, that is not in modern controllers yet, is
resilience to incorrectly formed messages.

3) Event layer. The layer is responsible for event
propagation between the controller’s core, services,
and network internal network applications. The net-
work application subscribes on events from the core,
produces other events to which other applications
may subscribe. This is usually done by publish-
ing/subscribing mechanism, either by writing your-
own implementation or using the standard one like



libevent for C/C++, RabbitMQ for Erlang.
4) Sevices. This is the most frequently used network

functionality like switches discovery, topology creat-
ing, routing, firewall.

5) Internal network applications. This is your-own appli-
cation like L2 learning switch. ”Internal” means that
it’s compiled together with the controller in order to
get better performance.

6) External API. The main idea behind the layer is to
provide language independent way to communicate
with controller. This common example is the web-
based RESTful API.

7) External network applications. Applications in any
language leveraging services via External API ex-
posed by controller services and internal applica-
tions. These applications are not needed in good
performance and low latency communication with
the controller. The common example is monitoring
applications.

8) Web UI layer. It provides WEB-based user interface
to manage the controller by setting up different pa-
rameters.

Also, the most important general question before choosing
the controller or creating new one is what programming
language to use. There is a trade off between the performance
and the usability. For instance, POX controller written on
Python is good for fast prototyping but it is too slow for
production.

IV. EXPERIMENTAL CONTROLLERS EVALUATION

We performed an experimental evaluation of the con-
trollers.

Our test bed consisted of two servers connected via 10Gb
link. The first server was used to launch the controllers. The
second server was used for traffic generation according to a
certain test scenario.

We chose the following seven SDN/OpenFlow controllers:

• NOX [12] is a multi-threaded C++-based controller
written on top of Boost library.

• POX [13] is a single-threaded Python-based controller.
It’s widely used for fast prototyping of network appli-
cation in research.

• Beacon [14] is a multi-threaded Java-based controller
that relies on OSGi and Spring frameworks.

• Floodlight [15] is a multi-threaded Java-based con-
troller that uses Netty framework.

• MUL [16] is a multi-threaded C-based controller writ-
ten on top of libevent and glib.

• Maestro [18] is a multi-threaded Java-based controller
that uses JAVA.NIO library.

• Ryu [19] is Python-based controller that uses gevent
wrapper of libevent.

Each controller runs the L2 learning switching application
provided by the controller. There are several reasons for
that. It’s quite simple and at the same time representative.

It fully uses controller’s internal mechanisms, and it also
shows how effective the chosen programming language is by
implementing single hash lookup.

We used the latest available sources of all controllers dated
March, 2013. We run all controllers with the recommended
settings for performance and latency testing, if available.

As a traffic generators we used freely available cbench [17]
and our-own framework hcprobe for controllers testing.
Cbench and hcrpobe emulates any number of OpenFlow
switches and hosts. Cbench is intended for measuring different
performance aspects of the controller including the minimum
and maximum controller response time, maximum throughput.
Hcprobe allows to investigate various characteristics of con-
trollers in a more flexible manner by specifying patterns for
generating OpenFlow messages (including malformed ones),
varying the number of reconnection attempts in case the
controller accidentally closes the connection, choosing traffic
profile, and etc. It is written in Haskell that is high-level
programming language and allows users to easily create their
own scenarios for controllers testing.

Our testing methodology includes performance and scal-
ability measurements as well as advanced functional anal-
ysis such as reliability and security. The goal of per-
formance/scalability measurements is to obtain maximum
throughput (number of outstanding packets, flows/sec) and
minimum latency (response time, ms) for each controller. For
reliability we measured the number of failures during long term
testing under a given workload profile. And as for security
we study how controllers work with malformed OpenFlow
messages.

Fig. 4. The average throughput achieved with different number of threads.

The figure 4 shows the maximum throughput for different
number of available cores per one controller. The single
threaded controllers (Pox and Ryu) show no scalability across
CPU cores. The performance of multithreaded controllers
increases steady in line for 1 to 6 cores, and much slower
for 7-12 cores because of using hyper threading technology
(the maximum performance benefit of the technology is 40%).
Beacon shows the best availability, achieving the throughput
near 7 billion flows per second. This is because of using shared
queues for incoming messages and batching for outgoing
messages.

The average response times of all controllers are between
80-100ms. The long-term tests show that most controllers



when running for quite a long time start to drop connections
with the switches and loose PacketIn messages. The average
number is 100 errors for 24 hours. And almost all controllers
crashes or loosing the connection with a switch when they
received malformed messages.

Let us come back to throughput numbers and understand if
the current performance enough. In the data centers new flow
request arrives every 10us in maximum and 300us to 2ms in
average [22]. Assuming small data center with 100K hosts
and 32 hosts/rack, the maximum flow arrival rate can be up to
300M with the median rate between 1.5M and 10M. Assuming
2M flows/sec throughput for one controller, it requires only
1-5 controllers to process the median load, but 150 for peak
load! In large-scale networks the situation can be tremendously
worse.

The solving of the problem should go two ways. The first
way is improving single controller itself by doing more ad-
vanced multi-threaded optimizations. The second way is using
multiple controller instances which collaboratively manage the
network. This approach is called a distributed controller.

V. MOVING TO DISTRIBUTED CONTROLLER

As we see in previous section single controller is not
enough for managing the whole network. There are two
problems here:

1) Scalability. Because networks are growing rapidly,
the controller’s resources are not enough to maintain
state of all network devices. Moreover, the flow setup
latency in a bigger networks is also increasing.

2) Reliability. The controller is a single point of failure.
If the controller crashes, the network stops.

To solve the above problems, we need physically dis-
tributed control plane with centralized view of the entire
network.

The scheme of the solution is presented in Figure 5.

Fig. 5. The organization scheme of distributed controller.

The networks divides into segments, which controlled by
dedicated instance of the controller. Network segments may
overlap to ensure network resiliency in case of failure of any
controller. In this case the switches will be redistributed over
appropriate instances of the controller.

Each controller is connected to a distributed data storage
that provides a consistent view of whole network. It stores
all switch- and application- specific information. Application
state is kept in the distributed data store to facilitate switch
migration and controller failure recovery.

In addition, each controller has failover controller in case
of its failure. It might be cold or hot. The cold failover is
turned off by default and starts only when the master controller
crashes. The hot failover receives the same messages as the
master controller, but has read-only access. This provides the
smallest recovery time.

There is a lot of open research questions like how to orga-
nized controllers consistency in the right way, how to reduce
overhead on using distributed data store, how to do switch
migration, how to run applications on distributed controllers,
what the best controllers placement is, and etc.

VI. CONCLUSION

Software Defined Networking (SDN) has been developed
rapidly and is now used by early adopters such as data
centers. It offers immediate capital cost savings by replacing
proprietary routers with commodity switches and controllers;
computer science abstractions in network management offer
operational cost savings, with performance and functionality
improvements too.

However there is a lot researching has to be done especially
in SDN software area. Controllers are not yet ready to use in
production because of insufficient performance to operate with
data centers and large scale networks load.

Distributed controller is the next step in developing
SDN/Openflow controllers. It’s solving the scalability and
reliability problems of modern controllers. For this we must
use the techniques already existed in software engineering.

REFERENCES

[1] M. Casado, T. Koponen, D. Moon, and S. Shenker, Rethinking Packet
Forwarding Hardware. In Proc. of HotNets, Nov. 2008.

[2] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Natasha
Gude, Nick McKeown, Scott Shenker, Rethinking enterprise network
control, IEEE/ACM Transactions on Networking (TON), v.17 n.4,
p.1270-1283, August 2009

[3] Martin Casado, Michael J. Freedman, Justin Pettit, Jianying Luo, Nick
McKeown, Scott Shenker. Ethane: Taking Control of the Enterprise,
ACM SIGCOMM 07, August 2007, Kyoto, Japan.

[4] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry
Peterson, Jennifer Rexford , Scott Shenker, Jonathan Turner, OpenFlow:
enabling innovation in campus networks, ACM SIGCOMM Computer
Communication Review, v.38 n.2, April 2008

[5] J. Hamilton, Data center networks are in my way, Talk at Stanford Clean
Slate CTO Summit, 2009.

[6] M. Casado, T. Koponen, R. Ramanthan, S. Shenker S. Virtualizing the
Network Forwarding Plane. In Proc. PRESTO (November 2010)

[7] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, S. Shenker,
Extending Networking into the Virtualization Layer, HotNets-VIII, Oct.
22-23, 2009

[8] J. Pettit, J. Gross, B. Pfaff, M. Casado, S. Crosby, Virtual Switching in
an Era of Advanced Edges, 2nd Workshop on Data Center Converged
and Virtual Ethernet Switching (DC-CAVES), ITC 22, Sep. 6, 2010

[9] Open Networking Foundation, https://www.opennetworking.org
[10] Openflow, http://www.openflow.org
[11] Openflow specification, http://www.openflow.org/wp/documents



[12] Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown,
N., and Shenker, S. NOX: towards an operating system for networks.
SIGCOMM Computer Communication Review 38, 3 (2008), 105-110.

[13] Pox documentation, http://www.noxrepo.org/pox/about-pox/
[14] Beacon documentation, https://openflow.stanford.edu/display/Beacon/Home
[15] Floodlight documentation, http://floodlight.openflowhub.org/
[16] Mul documentation, http://sourceforge.net/p/mul/wiki/Home/
[17] Cbench documentation, http://www.openflow.org/wk/index.php/Oflops
[18] Zheng Cai, Maestro: Achieving Scalability and Coordination in Cen-

tralized Network Control Plane, Ph.D. Thesis, Rice University, 2011
[19] Ryu documentation, http://osrg.github.com/ryu/
[20] Luigi Rizzo, netmap: a novel framework for fast packet I/O,Usenix

ATC’12, June 2012
[21] Packet Processing is Enhanced with Software from Intel DPDK,

http://intel.com/go/dpdk
[22] Theophilus Benson, Aditya Akella, and David A. Maltz, Network traffic

characteristics of data centers in the wild, IMC, 2010


