High performance in-kernel SDN/OpenFlow controller

Pavel Ivashchenko
Applied Research Center For Computer Networks
pivaschenko@arccn.ru

Alexander Shalimov
Applied Research Center For Computer Networks
ashalimov@arccn.ru

Ruslan Smeliansky
Applied Research Center For Computer Networks
rsmeliansky @arccn.ru

Abstract

This paper demonstrates capabilities of the in-kernel
OpenFlow controller which leverages abilities of the
contemporary multicore systems with reducing host net-
work communication overhead in Linux OS. The mea-
surements show the in-kernel controller has the fastest
throughput and the lowest latency almost two times less
comparing with existing OpenFlow controllers.

1 Introduction/Motivation

SDN/Openflow is the most innovative technology in the
area of computer networks of recent years [1]. It allows
us to automate and simplify network management: fine-
grained flows control, observing the entire network, uni-
fied open API to write your own network management
program, and so on. All control decisions are done first
in a centralized controller and then moves down to over-
seen network’s switches. In other words, the controller
is a heart of SDN/OpenFlow network and its character-
istics determine the performance of the whole network.
The controller throughput means how big and active our
network can be in terms of switches and hosts. The re-
sponse latency directly affects network’s congestion time
and end-user QoE.

The latest SDN/OpenFlow controllers performance
evaluation [3] shows that the maximum throughput was
demonstrated by the Beacon OpenFlow controller with
7 billions flow requests per second. However, this is
not enough for data centers where we need several times
higher performance [2]. According [5], for the small data
centers with 100K hosts and 32 hosts/rack, the maxi-
mum flow arrival rate can be up to 300M with median
rate around 10M and minimal rate around 1.5M. In the
large-scale networks the cituation can be tremendously
Worse.

There are two non-mutually exclusive ways to cover
this performance gap. The first way is to use multiple in-

stances of a controller collaboratively managing the net-
work and forming a distributed control plane [2, 4]. But
this brings a lot of complexity and overheads on main-
taining a consistent network view between all instances.

The second way is to improve single controller itself
by leveraging ability of contemporary multicore systems
and by reducing existing bottlenecks and overheads. The
network layer of OpenFlow Controllers is the most time
consuming part [2]: reading incoming OpenFlow mes-
sages from the NIC and communicating with OpenFlow
switches. For the last task the common approach is to
use multithreading. One thread listens the socket for new
switch connection requests and distributes the new con-
nections over other working threads. A working thread
communicates with the appropriate switches, receives
flow setup requests from them and sends back the flow
setup rule. There are a couple of advanced techniques.
For instance, Maestro distributes incoming packets using
round-robin algorithm, so this approach is expected to
show better results with unbalanced load. The first task
usually relies on the runtime of chosen programming lan-
guage. Let’s consider this problem in details.

From the system point of view, an OpenFlow con-
troller is a TCP server running in Linux userspace. Ev-
ery system call (malloc, free, read and write packet(s)
from the socket, etc) leads to context switching between
userspace and kernel space that requires additional time.
Approximately this time for FreeBSD Linux is 0.1ms
and takes 10% time for whole system call. Under the
high load this leads to significantly time overhead. More-
over, the userspace programs work in virtual memory
that also require additional memory translation and iso-
lation mechanism: hierarchical vs linear address transla-
tion. Our measurements show that for memory intensive
application this difference is up to 4 times. These issues
can be avoided if the OpenFlow controller will reside in
the Linux kernel.

In this paper, we presents a novel OpenFlow controller
that works as a module inside the Linux kernel and has



fastest throughput and the lowest latency comparing with
all existing OpenFlow controllers.

2 Architecture

Our openflow controller has 3 logical parts.

e Server. Server kernel thread listens to a socket, ac-
cepts new connections from switches, and evenly
distributes connections between frontends.

e Frontend. Frontend threads initialize connections
and check their correctness: the version of Open-
Flow, hello, features reply. The correctness of head-
ers are checked for every messages in the input
buffer until a features reply OpenFlow message will
be sent. If all verification is done, connections go to
backeds.

e Backend. Backend threads work with switches and
applications. They do the main job on sending and
receiving OpenFlow messages. Inside the thread
we use poll() to wait for changes in the sockets’
descriptors. We use per-switch input and output
buffers 512 Kbytes length.

This three-tier architecture protects the controller from
the attacks from control plane when someone tries to ini-
tialize many dummy connections to the controller (like
SYN flood).

3 Experimentation results

For performance evaluation we use the methodology de-
scribed in [3]. One different is that the performance of
single cbench is not enough to fully load the in-kernel
controller. So, our test-bed consists of two servers con-
nected with two 10Gb links and two cbenches generating
the packetin messages over these two links.

The figure 1 and table 1 shows the renewed throughput
and latency numbers for the existing controller against
the in-kernel controller. The throughput of the in-kernel
controller is 25Mfps that 4.5 times higher than Beacon.
The latency of the in-kernel controller is 45us that 1.5
times less than Beacon.

We also compare the performance of the in-kernel
OpenFlow controller and Beacon against flood attacks.
The controllers run on 2 threads. the flood generator
sends 3M dummy TCP connections per second. The
Beacon’s performance decreases almost to zero (5 times
less). The in-kernel controller shows almost the same
performance (less than 2%).

35000000
30000000
25000000 Inkernel
NOX
o 20000000 == POX
b == FloodLight
é 2000000 Beacon
== N UL
== [\l aestro
== Ryu

Figure 1: The average throughput achieved with differ-
ent number of threads (with 32 switches, 10° hosts per
switch)(Intel(R) Xeon(R) CPU E5645 2.40GHz)

In-Kernel 45
NOX 91
POX 323
Floodlight 75
Beacon 57
MuL 50
Maestro 129
Ryu 105

Table 1: The minimum response time (1076 secs/ flow)

References

[1] M. Casado, T. Koponen, D. Moon, S. Shenker. Re-
thinking Packet Forwarding Hardware. In Proc. of
HotNets, 2008

[2] A. Shalimov, R. Smeliansky, On Bringing Soft-
ware Engineering to Computer Networks with Soft-
ware Defined Networking, Proceeding of the 7th
Spring/Summer Young Researchers’ Collogium on
Software Engineering (SYRCoSE 2013), May 30-
31, 2013, Kazan, Russia

[3] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, R.
Smeliansky, Advanced Study of SDN/OpenFlow con-
trollers, Proceedings of the CEE-SECR13: Central
and Eastern European Software Engineering Con-
ference in Russia, ACM SIGSOFT, October 23-25,
2013, Moscow, Russian Federation

[4] Advait Dixit, Towards an Elastic Distributed SDN
Controller, Proceeding of the ACM SIGCOMM
HOTSDN 13, Hong Kong.

[5] T.Benson, A. Akella, D. Maltz, Network traffic char-
acteristics of data centers in the wild, IMC, 2010



