
EasyWay: Simplifying and automating enterprise network
management with SDN/OpenFlow

Alexander Shalimov
Applied Research Center for

Computer Networks
Moscow State University
ashalimov@arccn.ru

Danila Morkovnik
Applied Research Center for

Computer Networks
Moscow State University

dmorkovnik@arccn.ru

Sergey Nizovtsev
Applied Research Center for

Computer Networks
Moscow State University
snizovtsev@arccn.ru

Ruslan Smeliansky
Applied Research Center for

Computer Networks
Moscow State University

smel@arccn.ru

ABSTRACT
This paper presents new high level abstractions to manage
the whole network at once: ”names”, ”groups”, ”paths” in-
stead of low level traditional IPs, subnets, routes. We called
this approach as semantic network management where ad-
ministrators simply say what they want from the network
but not how and a SDN/OpenFlow controller will automat-
ically program the network elements. All low level details
are hidden from administrators (e.g., choosing IP address-
ing scheme). We implemented the proposed approach in a
new SDN/OpenFlow-based network management system for
enterprise networks called EasyWay.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.3 [Network Operations]:
Network management, Network monitoring

General Terms
Algorithms, Design, Measurement, Performance

Keywords
SDN, OpenFlow, Network management system, Adminis-
tration, Automation

1. INTRODUCTION
Modern enterprise network infrastructure is very complex:

a lot of varied network elements, complicated topology, dif-
ferent routing and security policies. Network administrators
are individuals that are mainly responsible for the mainte-
nance of such networks including network monitoring and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CEE-SECR ’14, October 23 - 24 2013, Moscow, Russian Federation.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2889-0/14/10 ...$15.00.
http://dx.doi.org/10.1145/2687233.2687251

troubleshooting, configuring switches and routers, setting
up new users and hosts. The main issues is that network
administrators do all of these tasks by hands from black
console terminals where they tediously print hundreds of
commands! They still have limited number of tools for net-
work debugging like ping, tcpdump, traceroute. Moreover,
configuration APIs for network elements are different for ev-
ery vendor (Cisco, Arista, NEC, Extreme, etc) that requires
additional trainings.

To help network administrators there are several Network
Management Systems (NMS) such HP OpenView [1], Cisco
Prime [2], Open NMS [3]. They are designed to monitor ac-
tivity of discovered network devices using SNMP protocol:
topology, utilization, throughput, latency, and so on. But
network administrator still need to configure networks de-
vices manually and to add new rules into switching/routing
tables by hand.

SDN/OpenFlow is the most revolutionary technology in
the area of computer networks of recent years [4]. It al-
lows us to configure flow tables for all network devices re-
motely from the logically centralized point called OpenFlow
controller. In SDN/OpenFlow, we don’t need to configure
routes manually and to enter hundreds of commands — we
just might specify what we want and OpenFlow controller
will do the rest. This provides great possibilities to auto-
mate and simplify network management.

Despite the potential benefits, all existing OpenFlow con-
trollers like Pox [5], FloodLight [6], OpenDaylight [7] have
very pure low level interfaces to the network. They only
display a topology with abilities to show and change flow
tables remotely. Administrators should care about each sin-
gle devices separately.

In this paper we introduce new high level abstractions to
manage the whole network at once. The paper is struc-
tured as follows. Section 2 explains the proposed approach
called semantic network management. Section 3 describes
IP addressing scheme and contains IP choosing algorithm to
reduce number of flows on switches. Section 4 describes im-
plementation details of the system called EasyWay that is a
noval SDN/OpenFlow-based Network management system.
Section 5 shows the result of our experimental evaluation of
the proposed algorithm and the implemented system.

2. PROPOSED APPROACH

2.1 Motivation
The key concept is to introduce higher levels of abstrac-

tions for network administration than existed now. These
new abstractions should really move network administration
towards to network management where we can simple con-
trol the whole network and have network operators instead
of networks administrators. SDN/OpenFlow is easier way
to make this step forward.

In SDN/OpenFlow, we don’t need to configure routes
manually and enter hundreds commands, specify OSPF1

and VRRP2 on top of RSTP3, and so on. We should sim-
ple ”draw” a needed path between network elements and an
OpenFlow controller does the rest by sending appropriate
commands to overseen network’s switches. You even can
just specify who can speak with whom, the controller will
choose paths for you according to company’s routing poli-
cies.

Others important responsibilities of network administra-
tors that can be simplify and automated with SDN/Open-
Flow are in an area of the network designing: establishing
IP addressing scheme (dividing the network into subnets in
order to structure network administration) and naming en-
tities in the network (assigning names to the hosts, because
it’s much easier to work with understandable names).

In our approach, first of all, we specify names for all enti-
ties in the network: hosts , servers, switches, etc. We also let
users to pick their host names. Then an operator can group
hosts and specify the paths for the whole group. Based on
groups and specified paths (or routing policies) we automat-
ically choose IP addresses for hosts in order to reduce the
number of entries into switches’ flow tables. For example,
for group of hosts that should have only an access to Inter-
net, it makes sense to use the same subnet like 10.0.1.∗ that
required only one rule in the core switch.

2.2 Semantic network management
To recap above mentioned ideas, the proposed approach to

network management allows network operators to work with
high level terms of ”names”, ”groups”, and ”paths” instead
of low level IPs, subnets, and routes.

• NAMES. Working with understandable names asso-
ciated with the hosts is much easier for the operator
than keeping in mind their IP or MAC addresses.

• GROUPS. Hosts might be combined into groups in
case we need to specify the same policy for them. E.g.
”the machines in the classroom have access only to the
Internet”.

• PATHS. Instead of configuring routes for each sin-
gle device in the network, the operator can ”draw” the

1The Open Shortest Path First (OSPF) is a link-state rout-
ing protocol for IP networks.
2The Virtual Router Redundancy Protocol (VRRP) is a
computer networking protocol that provides for automatic
assignment of available IP routers to participating hosts
(used for automatic default gateway selections on an IP sub-
network).
3The Rapid Spanning Tree Protocol (RSTP) is a network
protocol that ensures a loop-free topology for any bridged
Ethernet local area networks with faster convergence.

paths between groups and hosts through the whole net-
work specifying who can speak with whom.

We called this approach as semantic network manage-
ment.

3. IP CHOOSING PROBLEM
As was already explained above, administrators don’t

need to choose IP addresses or setup several DHCP servers.
They specify groups that can be located in the different net-
work segments. E.g. you might have two developers teams
located in the different floors, but they still should have visi-
bility of each other, and have an access to the same resources.
With groups all restrictions should be specified ones, not
several times for different segments.

This situation is kindly different from the traditional net-
works. The often-quoted ”Yakov’s Law” states ”Address-
ing can follow topology or topology can follow addressing;
choose one” âĂŞ– Y. Rekhter. In SDN/OpenFlow, you don’t
tight to topology, you can use any addressing scheme and
get a lot of benefits from there.

In this section, we introduces two sequential ideas on what
we can do with IP addressing scheme in semantic network
management area. First, we present IP addressing scheme
that works well with notion of groups. You can specify that
the same host can be in several groups at the same time.
The second idea is how to automatically choose what groups
should have close IP addresses to get maximum benefits.

3.1 IP addressing scheme
OpenFlow allows to set not only specific values in the

fields of flow tables, but also a set of values. This is obtained
by utilization of a bit mask. Bit mask is a string of bits that
is used for masking.

When combining several hosts in a group, we give them
the IPs that can have common bit mask. In this case, instead
of a single flow entry in the flow table for each host we can
add only one flow entry with their common IP-bitmask.

In the proposed model, we use LAN with 10.0.0.0/8 IPs.
IP address of each host in network is divided into four parts:
group’s pool (GP), group ID (GID), host’s pool (HP), and
host ID (HID) (see Figure 1). Group’s pool is 4 bits long,
group ID is 8 bits, host’s pool is 6 bits, and host ID is the
rest 6 bits.

Figure 1: IP address notion

The above lengths are not hardly fixed. It is possible to
change them depending on a network topology. For exam-
ple, in a network with a large number of users with similar
policies we can reduce the number of groups (GP and GID)
and, respectively, increase the number of different users (HP
and HID).

3.1.1 Requirements of the model

• All hosts in one group get the same group parameters
(GP and GID).

• Different groups can not have the same group param-
eters.

• Groups that can be subsequently combined, should
have the same group pool (GP).

• Each switch for some groups has unique host pool
(HP).

• All hosts which have the same group and are connected
to a switch must have the same host pool.

• Hosts which have the same group and connected to
different switches must have different host pool.

• All hosts which have the same group and connected to
some switches must have different host ID.

We can aggregate only those flow entries that have the
same action, e.g. send packet to the same output port –
action: output(p).

3.1.2 Group pool and Group ID
Group ID is an identifier of a group in a group pool. We

select 4 bits in address space for group pool. So we can
use 16 group pools. We select 8 bits for group ID. Every
bit corresponds to the same group: the first bit, that set in
”1”, corresponds to the first group, the fifth bit with ”1” to
the fifth group. So, in one group pool we can utilize only
8 groups. It was made in order to have the opportunity to
mask different groups.

Why we need ability for masking of groups:

• This is the possibility to further reducing the number
of flow entries in the flow tables. Flow entries on some
switch for groups, which have the same GP value and
action set, can be aggregated into one flow entry.

• This enables multi-group hosts, i.e. hosts that belong
to several groups. Maximum simultaneous group value
for host is defined by number of bits which was selected
to GID parameter in IP address. Host may consist only
in those groups that have the same pool.

The main purpose of utilizing the GP is to increase the max-
imum amount of groups. Without group pool parameter we
can mask all groups together, but the maximum value of
groups is 4 + 8 = 12 groups. With GP parameter we have
16 non-overlapping sets of groups. In every set we have 8
groups. So maximum value of groups is 16∗8 = 108 groups.
The main restriction of this method is the we can mask only
the groups in the same group pool.

3.1.3 Host pool
Host pool allows to avoid extreme increase number of flow

entries in ”border-group”switches or edge switches. ”Border-
group” switch has several ports with hosts from the same
group. Example of this case is shown in a figure 2. In
particular, this happens when the same group is in several
different network segments.

Assuming there is a certain routing policy from outside
of this segment to Group-2 (figure 2). If we utilize (group
parameters; host ID) addressing in this model, switch-A is
not able to determine where to send received packets from
an external network, because hosts with the same Group-2
is in two output ports: to switch-B and to switch-C. In this

Figure 2: Host pool example

case we must add new flow entry on switch-A for every host
from Group-2.

To prevent the increase of the amount of flow entries in
flow tables we add additional parameter –âĂŞ host pool.
In a case when elements of group are in different network
segments, we allocate for them the unique values of host
pool. When packet is received, the switch can determinate
the next switch unambiguously by analyzing the IP address
of destination.

Generally, the host pool of Group-X is number of switch
to which hosts of Group-X are connected.

3.1.4 Host ID
This parameter determines the host in the specific group

and in the specific host pool. In the same host pool there
must not be the coinciding host IDs. Otherwise, several
devices in the network will have identical IP.

Host IDs are assigned dynamically in sequence. If more
than 63 devices with the same group are connected to one
switch, the switch releases the second host pool.

3.2 IP distribution algorithm
In this section, we describe the algorithm which solves the

problem of automatic choosing of IP addresses for hosts.
This algorithm is based on IP addressing proposed in the
previous section. The purpose is to minimize the number
of flow entries in flow tables on switches. The task can be
divided into two subtasks:

1. Hosts should receive such IP addresses so that we could
select a general bitmask for them;

2. Combining groups in such group pools to maximize
number of the aggregated flows at all pools.

3.2.1 Input Data
Proposed algorithm adds flows proactively, i.e. before the

network functioning administrator initially sets combining
hosts in groups and policies (with paths) between groups:

• G – union of groups, N – number of groups in one
group pool;

• gk = {Hi1 , . . . , Hin} – hosts belong to groups gk;

• gm → gk via {Ki1 , . . . ,Kin} – routing policy between
groups gm and gk. Packets from group gm to gk will
pass through switches Ki1 , . . . ,Kin sequence. Note if

there is a policy gm → gk, it means that there is a
policy gk → gm via {Kin , . . . ,Ki1}.

Port p is called ”out-port” for switch Kik and policy gm →
gk via {Ki1 , . . . ,Kin}, if switch Kik is connected with switch
Kik+1 by port p. It means that a flow entry on switch Kik

will be added with action output(p) – ”send packet to port
p”. Group gm is called ”source-group” for port p.

Based on policies created by the administrator the initial
data sets will be prepared for calculating algorithm. Initial
data sets have an appearance: Set(j) = ({gi1 , . . . , gin}, k).
Each initial data set (j) defines count (k) out-ports for all
switches and the maximum union of source-groups for set is
gi1 , . . . , gin .

Let:

• Set(j).set = gi1 , gin ;

• Set(j).ports = k;

Define the function Subset(pk, Set(i)) with input param-
eters:

• pk = {g1, , gl} is union of some groups;

• Set(i) is initial data set.

Function defines the reduction of flow entries on switches
according to Set(i), if we use group pool pk. Function can
be calculated as:

1. counter = 0;

2. ∀g ∈ pk : if g ∈ Set(i).set→ Increment(counter);

3. return(counter − 1) ∗ Set(j).ports.

The task of distribution of groups is to find disjoint subsets
of all groups (p1, pn), which are group pools, in order to
maximize the following objective function:

F =

|G|/N∑
i=1

|Set|∑
j=1

Subset(pi, Set(j));

3.2.2 Steps
Algorithm is based on iterative search. On each step some

group pool is determined as set which aggregate the largest
number of flows. Algorithm is looking for local maximum
on each step in objective function.

1. Define array overlap[];

2. i = 1;G1 = G;TmpSet =
⋃

Set(j),∀j

3. Choose the group pool pi. Select an arbitrary group
gnew ∈ Gi and add it into the pool pi;

4. Analyze all initial data sets in TmpSet:

(a) if Set(j) ∈ TmpSet and gnew ∈ Set(j).set:

i. ∀gk ∈ Set(j).set and gk 6= gnew →
overlap[k] = overlap[k] + Set(j).ports

ii. Delete Set(j) from TmpSet;

5. In TmpSet we choose the index k, for which overlap[k]
is maximum;

6. Add the group gk into the group pool pi;

7. If the pool is not full:

(a) overlap[k] = 0; gnew = gk;

(b) goto step 4;

8. pi is a full group pool with an optimal allocation of
groups on step i;

9. Gi+1 = G/pi;

10. If Gi+1 6= ∅:

(a) TmpSet =
⋃

Set(j),∀j;
(b) i = i + 1;

(c) goto steo 3;

11. Algorithm successfully distributed groups into pools.

3.2.3 Algorithm analysis
The proposed algorithm has some bottlenecks. Firstly, it

is not fast and now we can utilize it only proactively, because
collecting the initial data sets (∀j Set(j)) takes a long pe-
riod of time. Secondly, at the moment the algorithm is not
adjusted for the dynamic changes in the network topology.
If the topology (switches, but not users) quickly changes,
proposed distribution of groups into the group pools can be-
come non optimal. In this case we should restart algorithm
to enumerate distribution, and, therefore, hosts might get
new IP addresses. Thus, we will have to rewrite the flow
entries on the switches.

4. IMPLEMENTATION

4.1 EasyWay
We have implemented the proposed ideas to network man-

agement in the system called EasyWay. It works on top of
Runos OpenFlow controller [8]. RUNOS is based on libfluid
code base developed by CpqD for Open Networking Founda-
tion [9]. All controller-side code is written on C++11. The
GUI is written on HTML5 and JavaScript. From RUNOS
point of view, Easyway is an network application that widely
leverages different services like like device and link mon-
itoring, topology, routing with QoS support, DNS proxy,
DHCP proxy, ARP proxy, BGP, load balancing, firewall,
ACL, NAT, and OpenFlow rules composer.

EasyWay is publicly available on
https://github.com/ARCCN/easyway.

4.2 Features
Let us consider the following use case to demonstrate

benefits of using EasyWay as a network management sys-
tem. The demo company is middle multipurpose company
with the following needs: it has a classroom where students
should have an access only to training materials; company’s
guest should have access to the Internet via WiFi, but not to
the internal resources; only HR department will have access
to the database with personal data of employees; the boss
will have guaranteed high bandwidth for video conference
calls; load balancing of customers’ requests along back-ends
servers; restricting access from outside to the enterprise net-
work (ACL). In traditional networks, it takes several weeks
to setup and configure the network infrastructure with these
policies. The proposed system allows to setup these require-
ments within 10 minutes.

Figure 3: EasyWay example.

Figure 3 shows a sample view of EasyWay. The main
features are:

• Topology discovery. The network map includes in-
formation about network devices (type, name, char-
acteristics, etc) and their interconnections. It also de-
tects host migration for both wired and wireless clients.

• Network monitoring. The system automatically
monitors link utilization, rtt, load of network elements.
The width of the links in the topology means the chan-
nels’ bandwidth, the color indicates channel’ load level
(black - not in use, green - almost free, yellow - busy,
red - critical).

• Naming. The operator can specify the name for end-
user machines or let users to pick their names (DNS
and DHCP agents).

• Grouping. The operator can group the hosts into one
logical unit. Groups also have names. Group can be
distributed over the network.

• Path selection. The operator can specify how the
path should go or just specify the destination and the
system will choose the actual path (based on shortest-
path routing).

• QoS support. The operator can specify the needed
QoS setting for the path. The path’s width means the
actual bandwidth dedicated to the path.

• Load balancing. The system supports flow balancing
on OpenFlow switches. The feature can be enabled for
every switch by selecting the LB item (load balancer)
in the switch’s drop down menu and then choosing the
links for balancing.

• Firewall/ACL. The system allows the operator to
specify ACL rules on OpenFlow switches with one of
the prespecified rules like ”allow HTTP traffic”.

• NAT. The operator may enable NAT feature on a core
switch and specify the public IP for address transla-
tion. We have implemented only subset of function-
ality required by different RFCs: only endpoint inde-
pendent mapping and filtering with limited support of
ALGs.

Figure 4: IP addresses algorithms

5. EXPERIMENTAL EVALUATION

5.1 IP addresses
We have three ways to fill flow tables in the switches:

• Traditional ”L3 Learning Switch” mode can be used.
In order to provide communications between hosts we
must add new flow entry on all switches for each pair
of hosts.

• To reduce number of flow entries we can use IP ad-
dressing and due to bitmask it is possible to aggre-
gate different flow entries into one flow entry. We will
consider IP addressing model proposed above. Uti-
lizing this method we are masking IP source address
on the border switches and IP source and destination
addresses on core switches.

• The proposed algorithm for smart distribution groups
into group pools can be used in addition to IP ad-
dressing. Due to this algorithm we can use masking
not only for IP addressed of hosts in groups, but also
for different groups in group pool.

When we apply the first method (L3 Learning), we should
add flow entry for each pair of IP-addresses. We will assume
Group-N contains |Gn| hosts. If Group-1 can communicate
with Group-2 we must create |G1| ∗ |G2| flow entries on each
switch between them. If Group-1 communicates with set of
groups it is necessary to use

∑
∀iG1→Gi

|Gi| instead |G2|. It
means that summary number of rules for communication of
two groups is:

• count of rules for Group − 1 = |G1| ∗∑
∀iG1→Gi

|Gi| ∗ count of hops

• summary count of rules =∑
∀k count of rules for Group− k

When we apply the second and third methods, we have
huge reduction of flow entries on core switches and relatively
large reduction on border switches.

We consider network topology consisting from varied
quantity of groups. Other parameters are fixed: each group
consists of 20 hosts; each host belongs to only one group;
each group (i.e. hosts in this group) can communicate with
2 other groups; the average number of hops between groups
is 3 switches.

Figure 4 shows number of rules (flow entries) on all
switches in the network. The abscissa shows the number of
groups in the network. The ordinate shows the total number
of rules. The proposed ways to IP addresses shows enormous
benefits compared to simple distribution. The proposed al-
gorithm is 20% than just picking up IP addresses according
to the proposed scheme. Note, our IP addressing scheme is
close to traditional IP addresses if we forget about groups
in our model.

5.2 Network communication overhead
When we utilized the application to monitoring of the net-

work, there is an additional (overhead) traffic and messages
between switches and the controller. This overhead can be
divided into three types:

• LLDP traffic and, respectively, PacketIn messages are
received by the controller. This type of

• Overhead initiated by LinkDiscovery and Topology ap-
plications;

• ARP messages are initiated by switches to check host’s
presence in the network; Multipart messages are sent
by the controller to switches to get port statistics;

LLDP traffic appears every 10 seconds. According to re-
ceived PacketIn messages, controller understands actual net-
work topology, i.e. switches and links between them:
– overhead.LLDP = ((count of border sw) ∗ 25 +
(count of core sw) ∗ 4)/10. We assume average number of
active ports on border switches is (500/20) = 25 and on core
switches is 4.
– overhead.PacketIn = ((count of border sw) ∗ 1 +
(count of core sw) ∗ 4)/10. Border switches receive only
one LLDP message, because it is connected to one another
switch.

Every 30 seconds border-switches sends ARP messages
to hosts to get information about their presence. If host
didn’t reply to the ARP request, it means that host discon-
nected. Number of ARP messages doesn’t depend on num-
ber of switches and can be calculated as: overhead.ARP =
((count of hosts) ∗ 2)/30; // request and reply if the host
exists

And every second controller requests statistics per port on
all switches. So, controller sends multipart message (type
is OFPMP PORT STATS) and gets the statistics on the
switches. Analyzing this information, application can dis-
play actual congestion of the network. the Number of mes-
sages depends on the number of switches in the network
topology: overhead.Multipart = (count of switches) ∗ 2;
//request and reply

We consider network topology consisting from the fixed
quantity of hosts and varied quantity of core switches. In
our topology we have 500 active hosts located in various
network’s segments and 20 border-switches.

Figure 5 shows packet’s overhead arising every second in
the network. In average, this is 200 OpenFlow messaged per
second.

5.3 Performance
EasyWay works mostly proactively. If a new host ap-

pears, the administrators must specify group, nameas, ad-
ditional policies, and the system proactively install all nec-
essary rules down to the network. Also EasyWay works in

Figure 5: Overheads in the network

active mode in the following scenarios. Administrators can
specify actions to apply for every new hosts appeared in the
dedicated network segment. This works well in guests WiFi
zone. Some applications works in the active mode: Load
Balancer, NAT. Thus we need to know how fast our system
in terms of throughput and latency.

Throughput (cps) 100K
Latency (us) 300

Table 1: The performance characteristics

Tables 1 shows the average numbers. Note this is not raw
IO performance of RUNOS controller. This is an application
performance running on a single core.

6. CONCLUSION
We introduce new high level abstractions to have con-

trol over the whole network at once calles semantic network
management. All low level details are hidden from the eyes
of network administrators. The paper shows benefits the
enterprise can get having SDN networks. We have imple-
mented the proposed ideas in a new SDN/OpenFlow-based
network management system for enterprise networks called
EasyWay.

From logically point of view our approach is very close
to high level programming languages for SDN networks like
Pyretic [10]. The differences is our goal was to simplify
network administrating from the user graphical side with
higher encoded functionality.

7. REFERENCES
[1] HP OpenView, http://openview.hp.com
[2] Cisco Prime Infrastructure,

http://www.cisco.com/c/en/us/products/cloud-
systems-management/prime-infrastructure/index.html

[3] Open NMS - Enterprise-Grade Network Management
System, http://www.opennms.org/

[4] M. Casado, T. Koponen, D. Moon, S. Shenker.
Rethinking Packet Forwarding Hardware. In Proc. of
HotNets, 2008

[5] POX. http://www.noxrepo.org/pox/about-pox/
[6] Floodlight. www.projectfloodlight.org/floodlight/
[7] OpenDaylight. http://www.opendaylight.org/
[8] RUNOS. https://github.com/ARCCN/runos
[9] LibFluid. opennetworkingfoundation.github.io/libfluid
[10] J. Reich, C. Monsanto, N. Foster, J. Rexford,

D. Walker. Modular SDN Programming with
Pyretic.Communications Magazine, IEEE
38(5):128-134, 2013.

