
Network Function Virtualization: Virtual Carrier Grade NAT
with Linux and Intel Architectures

 Alexander Shalimov

Applied Research Center For Computer Networks
ashalimov@arccn.ru

Igor Ryzhov
Applied Research Center For Computer Networks

iryzhov@arccn.ru

Alexander Britkin
NFWare

abritkin@nfware.com

Pavel Ivashchenko
Applied Research Center For Computer Networks

pivashchenko@arccn.ru

Ruslan Smeliansky
Applied Research Center For Computer Networks

rsmeliansky@arccn.ru

Abstract

This paper demonstrates and evaluates the capabilities of the
Virtualized Carrier Grade NAT with Linux and Intel
Architecture which leverages abilities of the multicore systems
with reducing network communication overhead in Linux OS.

The paper describes how virtualized CG-NAT is implemented
on an Intel architecture server platform to overcome network
virtualization challenges using Intel Data Plane Development
Kit and achieve the carrier grade service.

1 Introduction / Motivation

CG-NAT [1-5] is a «centralized NAT» placed in the service
provider's network. It can be an addition to the NAT at the
customer edge (NAT444) or instead to the customer NAT
(DS-Lite approach) and follows the concept to pull away
public IPv4 addresses from the customer site, where their
multiplexing capacity is not efficiently utilized, to the outside
of the centralized CG-NAT where many customer networks
can share a single public IPv4 address.

Presented in this paper NFWare CG-NAT is working in
NAT444 operational mode and maps each application flow on
customer edge to the public IPv4 address and one of its TCP
or UDP ports as identified by the combination of a private
IPv4 address and a TCP or UDP port. CG-NAT multiplexes
the addresses of many inside devices to a single outside
address by mapping application flows. The typical use-case of
NAT444 for service provider is to continue to assign addresses
to large numbers of new customers when there are no new
IPv4 addresses to use.

One of the biggest challenges of virtualization of data plane
intensive functions like CG-NAT is to achieve both a data
plane with high-performance forwarding and carrier grade
quality in a virtualized environment. In order to improve the
data plane forwarding performance in a virtualization
environment of virtual CG-NAT we adopted the Intel Data
Plane Development Kit (DPDK).

The Intel DPDK is a set of data plane libraries designed for
high-speed networking [6]. Compatible across many types of
Intel CPU, the Intel DPDK offers a software programming
model that can accommodate different network applications
and system configurations.

For virtual network functions, like CG-NAT, Intel DPDK via
its set of API offers low-overhead alternatives to traditional
Linux system calls and enables the creation of virtual network
functions that can effectively scale in performance. According
to this concept, CG-NAT by leveraging Intel DPDK processes
the majority of packets outside the Linux kernel thus avoiding
Linux OS overheads such as timers, lockers and threads,
however Linux networking stack is still involved for
processing of signaling and control protocols (e.g. BGP.) With
this approach most of the CPU cores can be dedicated to
perform network address translation functions maximizing the
overall throughput of CG-NAT.

In this paper, we present a novel Virtual Carrier Grade NAT
that works on commodity Intel architecture server platform
and meets carrier grade requirements such as throughput, low
latency and scalability.

2 Architecture

Logically every CG-NAT cosists of two main translation
modules: MATCH and RW (see figure 1).

Module MATCH performs translation table lookup for each
incoming packet from an internal network. The lookup is done
using 5 fields of a packet: ip_src, ip_dst, type, port_src,
port_dst (actual number of fields depends on mapping policy:
endpoint independent, address&port dependent, and so on).
Translation rules are stored in a mapping table: ip_src and
port_src which should be changed during translation.

Figure 1. CG-NAT basic scheme.

If the mapping is successful, the packet is forwarded to RW
module which performs the field rewrite operation and

calculates the control sum. If the mapping is not successful,
the packet is forwarded to the module which identifies the
translation rule and according to translation modes (pooling,
port assignment, port parity, port contiguity) chooses the
correct ip_src and port_src . Then packet is forwarded to RW
module and to an external network. The process of packet
processing from external network is almost the same with one
exception: if there is no rule in a reverse address translation
table, the packet is dropped.

Figure 2 shows our advanced scalable multicore design to
provide high performance communicating in a virtualized
environment. Main core is responsible for running maintaining
tasks: starting other working threads, providing command line
interface to the system, displaying statistics and other
infromation about the system, answering on network request
to the system like ARP and PCP. NAT cores process packets
coming from an internal and external networks as decribed in
the basic scheme. We assign a core per a physical port and
separate inbound and outbound traffic processing via marking
physical ports as internal or external. Several cores are
dedicated for cleaning up the tables after sessions timeout. The
logging task runs on the separate cores as well in order not to
slow down main packet processing while writing log messages
on a hard disk. Note the numbers of core per tasks are
configurable depending on performance requirements.

All cores have access to main memory (1Gb huge pages)
where all required tables resides: arp/route table, client tables,
flows tables, sessions table, external IPs pool table, etc.

Intel DPDK is mainly used for interaction with NICs, intercore
communication, working with the main memmory (buffer
allocation, etc).

Figure 2. CG-NAT multicore design.

The Application Layer Gateway (ALG) functionality allows
CG-NAT to transparently translate IP addresses and ports in
messages for protocols like FTP, SIP, RTSP, PPTP, ICMP and
others. Each ALG is implemented as a pluggable module.

3 Experimentation results

For performance evaluation we used our netmap-based custom
traffic generator [7] sending as much as possible UDP packets
to CG-NAT. CG-NAT translates and forwarded packets to the
external network. The result has been measured on the
hardware switch directly connected to CG-NAT. CG-NAT
runs on COTS hardware with 2 CPU 8 cores each, 3GHz,
16GB RAM and 10Gbit network cards.

Table 1 summarizes the overall performance numbers for CG-
NAT. It supports maximum 12Mpps with first packet delay
equal to 80us and 40us for further packets. Currently we can
maintain 7.5 million sessions due to main memory limitation.
Connection setup time is 0.6 Million for the most hard
scenario with enabled arbitrary mode. With enabled port block
allocation mode we achieve 5 million connections per second.

Table 1. CG-NAT performance numbers (per 10Gbit)

Throughput, packets per second
(64 bytes)

• 1 flow

• 1000 flows

10 Million

6 Million

New connections per second 0.6 Million

Concurrent connections 7.5 Million

Latency, us

• first packet delay

• next packets delay

80us

40us

The figure 3 shows the performance results for different
packet sizes in kilopackets per second. The red line is
theoretical maximum number of packets per second for 10Gb
channel. The blue line is our CG-NAT system. The green line
is Open vSwitch (OVS)-based kernel NAT. It has the same
rate for all sizes due to limitation of the Linux kernel
networking stack. Our system demonstrates the higher
numbers and is able to process all 10Gb channel bandwidth
starting from medium packet sizes

Figure 3. CG-NAT Performance Results (kpps)

References

[1] RFC 2663, IP Network Address Translator (NAT)
Terminology and Considerations

[2] RFC 4787, Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP

[3] RFC 5382, NAT Behavioral Requirements for TCP
[4] RFC 5508, NAT Behavioral Requirements for ICMP
[5] RFC 6888, Common Requirements for Carrier-Grade

NATs (CGNs)
[6] Intel DPDK, http://intel.com/go/dpdk
[7] Netmap, http://info.iet.unipi.it/~luigi/netmap/

