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Abstract 

This paper demonstrates and evaluates the capabilities of the 
Virtualized Carrier Grade NAT with Linux and Intel 
Architecture which leverages abilities of the multicore systems 
with reducing network communication overhead in Linux OS.  

The paper describes how virtualized CG-NAT is implemented 
on an Intel architecture server platform to overcome network 
virtualization challenges using Intel Data Plane Development 
Kit and achieve the carrier grade service. 

1 Introduction / Motivation 

CG-NAT [1-5] is a «centralized NAT» placed in the service 
provider's network. It can be an addition to the NAT at the 
customer edge (NAT444) or instead to the customer NAT 
(DS-Lite approach) and follows the concept to pull away 
public IPv4 addresses from the customer site, where their 
multiplexing capacity is not efficiently utilized, to the outside 
of the centralized CG-NAT where many customer networks 
can share a single public IPv4 address. 

Presented in this paper NFWare CG-NAT is working in 
NAT444 operational mode and maps each application flow on 
customer edge to the public IPv4 address and one of its TCP 
or UDP ports as identified by the combination of a private 
IPv4 address and a TCP or UDP port. CG-NAT multiplexes 
the addresses of many inside devices to a single outside 
address by mapping application flows. The typical use-case of 
NAT444 for service provider is to continue to assign addresses 
to large numbers of new customers when there are no new 
IPv4 addresses to use.  

One of the biggest challenges of virtualization of data plane 
intensive functions like CG-NAT is to achieve both a data 
plane with high-performance forwarding and carrier grade 
quality in a virtualized environment. In order to improve the 
data plane forwarding performance in a virtualization 
environment of virtual CG-NAT we adopted the Intel Data 
Plane Development Kit (DPDK).  

The Intel DPDK is a set of data plane libraries designed for 
high-speed networking [6]. Compatible across many types of 
Intel CPU, the Intel DPDK offers a software programming 
model that can accommodate different network applications 
and system configurations.  

For virtual network functions, like CG-NAT, Intel DPDK via 
its set of API offers low-overhead alternatives to traditional 
Linux system calls and enables the creation of virtual network 
functions that can effectively scale in performance. According 
to this concept, CG-NAT by leveraging Intel DPDK processes 
the majority of packets outside the Linux kernel thus avoiding 
Linux OS overheads such as timers, lockers and threads, 
however Linux networking stack is still involved for 
processing of signaling and control protocols (e.g. BGP.) With 
this approach most of the CPU cores can be dedicated to 
perform network address translation functions maximizing the 
overall throughput of CG-NAT. 

In this paper, we present a novel Virtual Carrier Grade NAT 
that works on commodity Intel architecture server platform 
and meets carrier grade requirements such as throughput, low 
latency and scalability. 

2 Architecture 

Logically every CG-NAT cosists of two main translation 
modules: MATCH and RW (see figure 1). 

Module MATCH performs translation table lookup for each 
incoming packet from an internal network. The lookup is done 
using 5 fields of a packet: ip_src, ip_dst, type, port_src, 
port_dst (actual number of fields depends on mapping policy: 
endpoint independent, address&port dependent, and so on). 
Translation rules are stored in a mapping table: ip_src and 
port_src which should be changed during translation. 

 
Figure 1. CG-NAT basic scheme.  

If the mapping is successful, the packet is forwarded to RW 
module which performs the field rewrite operation and 



calculates the control sum. If the mapping is not successful, 
the packet is forwarded to the module which identifies the 
translation rule and according to translation modes (pooling, 
port assignment, port parity, port contiguity) chooses the 
correct ip_src and port_src . Then packet is forwarded to RW 
module and to an external network. The process of packet 
processing from external network is almost the same with one 
exception: if there is no rule in a reverse address translation 
table, the packet is dropped. 

Figure 2 shows our advanced scalable multicore design to 
provide high performance communicating in a virtualized 
environment. Main core is responsible for running maintaining 
tasks: starting other working threads, providing command line 
interface to the system, displaying statistics and other 
infromation about the system,  answering on network request 
to the system like ARP and PCP. NAT cores process packets 
coming from an internal and external networks as decribed in 
the basic scheme. We assign a core per a physical port and 
separate inbound and outbound traffic processing via marking 
physical ports as internal or external. Several cores are 
dedicated for cleaning up the tables after sessions timeout. The 
logging task runs on the separate cores as well in order not to 
slow down main packet processing while writing log messages 
on a hard disk. Note the numbers of core per tasks are 
configurable depending on performance requirements. 

All cores have access to main memory (1Gb huge pages) 
where all required  tables resides: arp/route table, client tables, 
flows tables, sessions table, external IPs pool table, etc. 

Intel DPDK is mainly used for interaction with NICs, intercore  
communication, working with the main memmory (buffer 
allocation, etc). 

 
Figure 2. CG-NAT multicore design. 

 

The Application Layer Gateway (ALG) functionality allows 
CG-NAT to transparently translate IP addresses and ports in 
messages for protocols like FTP, SIP, RTSP, PPTP, ICMP and 
others. Each ALG is implemented as a pluggable module.  

3 Experimentation results 

For performance evaluation we used our netmap-based custom 
traffic generator [7] sending as much as possible UDP packets 
to CG-NAT. CG-NAT translates and forwarded packets to the 
external network. The result has been measured on the 
hardware switch directly connected to CG-NAT. CG-NAT 
runs on COTS hardware with 2 CPU 8 cores each, 3GHz, 
16GB RAM and 10Gbit network cards. 

Table 1 summarizes the overall performance numbers for CG-
NAT. It supports maximum 12Mpps with first packet delay 
equal to 80us and 40us for further packets. Currently we can 
maintain 7.5 million sessions due to main memory limitation. 
Connection setup time is 0.6 Million for the most hard 
scenario with enabled arbitrary mode. With enabled port block 
allocation mode we achieve 5 million connections per second.  

Table 1. CG-NAT performance numbers (per 10Gbit) 

Throughput, packets per second 
(64 bytes) 

• 1 flow 

• 1000 flows 

 

 

10 Million 

6 Million 

New connections per second 0.6 Million 

Concurrent connections 7.5 Million 

Latency, us 

• first packet delay 

• next packets delay 

 

80us  

40us 

 

The figure 3 shows the performance results for different 
packet sizes in kilopackets per second. The red line is 
theoretical maximum number of packets per second for 10Gb 
channel. The blue line is our CG-NAT system. The green line 
is Open vSwitch (OVS)-based kernel NAT. It has the same 
rate for all sizes due to limitation of the Linux kernel 
networking stack. Our system demonstrates the higher 
numbers and is able to process all 10Gb channel bandwidth 
starting from medium packet sizes 

 

 
Figure 3. CG-NAT Performance Results (kpps) 
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